

WELCOME

Chapter 16: Section 1:

Identifying & Graphing Piecewise & Absolute Value Functions

Warm Up

1) Are the rationals closed under, (add, subt, mult, div.) if not give a counter example.

- 2) Write each of the following as a fraction.
 - a) .245245245... b) .43434343...

3) Simplify each of the following

a)
$$\sqrt{-99}$$

b)
$$x^{-4}x^{12}$$

c)
$$(x^3)^8$$

Chap. 16 Sect 1: Learning Target

- I can identify and graph Piecewise Functions

- I can identify and graph Abs Value functions

Piecewise Function

A function that uses multiple equations on non-overlapping intervals to express change between an input and output.

$$f(x) = \begin{cases} 2x + 1 & 0 \le x < 3 \\ 7 & 3 \le x \le 6 \\ -\frac{1}{2}x + 10 & 6 < x \le 10 \end{cases}$$

Try It...

$$f(x) = \begin{cases} -2x - 3 & x < -1 \\ x - 5 & x \ge -1 \end{cases}$$

Use either the endpoints method or the erasing method.

Evaluating Piecewise Functions

We can evaluate a piecewise function by plugging the inputs into the appropriate equation for where they exists.

$$f(x) = \begin{cases} 2x + 2 & 0 \le x < 3 \\ 1 & 3 \le x \le 4 \\ -x + 10 & 4 < x \le 10 \end{cases}$$

$$0 \le x < 3$$
 $3 \le x \le 4$
 $4 < x \le 10$

$$f(7) = f(1) = f(4) =$$

$$f(4) =$$

Absolute Value Function

A V-Shaped piecewise function that is made from two lines that have opposite(+/-) slopes.

$$f(x) = \left| \frac{1}{2} x \right| - 1$$

$$f(x) = \begin{cases} -\frac{1}{2}x - 1 & x \le 0 \\ \frac{1}{2}x - 1 & x \ge 0 \end{cases}$$

Try It...

$$f(x) = |2x| - 5$$

