

Warm Up

1) Are the rationals closed under, (add, subt, mult, div.) if not give a counter example.
2) Write each of the following as a fraction.
a) . 245245245 ...
b) . 43434343 ...
3) Simplify each of the following
a) $\sqrt{-99}$
b) $x^{-4} x^{12}$
c) $\left(x^{3}\right)^{8}$

Chap. 16 Sect 1: Learning Target

- I can identify and graph Piecewise Functions
- I can identify and graph Abs Value functions

Piecewise Function

A function that uses multiple equations on non-overlapping intervals to express change between an input and output.

$$
f(x)=\left\{\begin{array}{cc}
2 x+1 & 0 \leq x<3 \\
7 & 3 \leq x \leq 6 \\
-\frac{1}{2} x+10 & 6<x \leq 10
\end{array}\right.
$$

$$
f(x)=\left\{\begin{array}{cc}
-2 x-3 & x<-1 \\
x-5 & x \geq-1
\end{array}\right.
$$

						y -								
							6							
							5							
							4							
							3							
							2							
							1							
4	-5	-4	-3	-2	-1		0	1	2	2	3	4	5	
							-1							
							-2							
							3							
							-4							
							5							
							,							

Use either the endpoints method or the erasing method.

Evaluating Piecewise Functions

We can evaluate a piecewise function by plugging the inputs into the appropriate equation for where they exists.

$$
\begin{gathered}
f(x)=\left\{\begin{array}{cc}
2 x+2 & 0 \leq x<3 \\
1 & 3 \leq x \leq 4 \\
-x+10 & 4<x \leq 10
\end{array}\right. \\
f(7)=\quad f(1)=r(4)=
\end{gathered}
$$

Absolute Value Function

A V-Shaped piecewise function that is made from two lines that have opposite(+/-) slopes.

$$
\begin{aligned}
& f(x)=\left|\frac{1}{2} x\right|-1 \\
& f(x)=\left\{\begin{array}{rr}
-\frac{1}{2} x-1 & x \leq 0 \\
\frac{1}{2} x-1 & x \geq 0
\end{array}\right.
\end{aligned}
$$

$$
f(x)=|2 x|-5
$$

